首页> 外文OA文献 >Maximum-Margin Structured Learning with Deep Networks for 3D Human Pose Estimation
【2h】

Maximum-Margin Structured Learning with Deep Networks for 3D Human Pose Estimation

机译:用于3D人体姿势的深度网络的最大边界结构化学习   估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on structured-output learning using deep neural networksfor 3D human pose estimation from monocular images. Our network takes an imageand 3D pose as inputs and outputs a score value, which is high when theimage-pose pair matches and low otherwise. The network structure consists of aconvolutional neural network for image feature extraction, followed by twosub-networks for transforming the image features and pose into a jointembedding. The score function is then the dot-product between the image andpose embeddings. The image-pose embedding and score function are jointlytrained using a maximum-margin cost function. Our proposed framework can beinterpreted as a special form of structured support vector machines where thejoint feature space is discriminatively learned using deep neural networks. Wetest our framework on the Human3.6m dataset and obtain state-of-the-art resultscompared to other recent methods. Finally, we present visualizations of theimage-pose embedding space, demonstrating the network has learned a high-levelembedding of body-orientation and pose-configuration.
机译:本文专注于使用深度神经网络进行结构化输出学习,以根据单眼图像对3D人体姿势进行估计。我们的网络将图像和3D姿势作为输入并输出一个得分值,当图像-姿势对匹配时得分值高,否则得分低。该网络结构包括用于图像特征提取的卷积神经网络,然后是用于转换图像特征并将其构成为联合嵌入的两个子网络。分数函数则是图像和姿势嵌入之间的点积。使用最大余量成本函数共同训练图像姿态嵌入和得分函数。我们提出的框架可以解释为结构化支持向量机的一种特殊形式,其中使用深度神经网络来区别学习联合特征空间。我们在Human3.6m数据集上测试了我们的框架,并获得了与其他最新方法相比最先进的结果。最后,我们呈现图像-姿势嵌入空间的可视化,表明网络已经学会了身体定向和姿势配置的高级嵌入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号